
AD 

GRANT NUMBER DAMD17-94-J-4237 

TITLE:  Development of a Stochastic Simulation Model of the Cost- 
Effectiveness of Promoting Breast Cancer Screening 

PRINCIPAL INVESTIGATOR:  Nicole Urban, Ph.D. 

CONTRACTING ORGANIZATION:  Fred Hutchinson Cancer Research 
Seattle, Washington  98104-2092 

REPORT DATE:  September 1996 

TYPE OF REPORT:  Annual 

PREPARED FOR:  Commander 
U.S. Army Medical Research and Materiel Command 
Fort Detrick, Frederick, Maryland 21702-5012 

DISTRIBUTION STATEMENT:  Approved for public release; 
distribution unlimited 

The views, opinions and/or findings contained in this report are 
those of the author(s) and should not be construed as an official 
Department of the Army position, policy or decision unless so 
designated by other documentation. 

19970214 009 DTIC QUALITY INSPECTED ^ifTTED 1 



</ 

REPORT DOCUMENTATION PAGE t onn App,ovr.d 

OMB No. 0704-0 J8S 

Public reporting burden lor this collection of in[0rm«,;m i 
oalt.cr.ng and maintaining the cl.ua needed, and comptctir.,, . 

oV^al^h^sZ^iÖ"^^,^^)1^-,'^ r*&u?"9 ,h's t,°"5c"/ lo Wasl.io9<on Headquarters Services. Directors uav.s ivgnway. iu.se wo,. Arlington. VA   22202-4302. and lo the Offcc o( Management and Budget   Paperwork Redu 

I is estimated lo average 1 hour per response, including the lime for reviewing instructions, scare 
ling and reviewing the collection ol information. Send comments reoardmn this burden estimate 
cing this burden to Washington Headquarters Services. Directorate lor tnformatioo Operations ai 
2. and to the Office of Management and Budget. Paperwork Reduction Project I0704-016S]   Wa< 

>_s; searching costing 
- or any otlic? 

-   . jnd Report*   i 
SSI. Washing,on_ 5'c 

1.   AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 
September   1996 

4. TITLE AND SUBTITLE       Development  of  a  Stochastic Simulation 

Model   of   the   Cost-Effectiveness   of   Promoting  Breast 
Cancer Screening 

3.   REPORT TYPE AND DATES COVERED 
Annual    (22  Aug   95   -   21  Aug   gg) 

data source- 
aspect of th. 
215 Jelfe.sc 
201,03. 

6. AUTHOR(S) 

Nicole Urban, Ph.D. 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Fred Hutchinso'n Cancer Research 

Seattle,   Washington     98104-2092 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Commander 

U.S.   Army Medical  Research and Materiel  Command 
Fort Detrick,   Frederick,   MD     21702-5012 

11. SUPPLEMENTARY NOTES 

5.   FUNDING NUMBERS 

DAMD17-94-J-4237 

PERFORMING ORGANIZATION 
REPORT NUMBER 

10.   SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

12a.  DISTRIBUTION /AVAILABILITY STATEMENT 

Approved for public  release;   distribution unlimited 

13.  ABSTRACT (Maximum 200 

Year 02: 

12b.   DISTRIBUTION CODE 

During the second year of this project, the components of the model of breast cancer 
screening were outlined and coding begun. The literature on the natural history of breast 
cancer was carefully reviewed with consulting experts, and a modeling strategy was 
developed based on the findings. Model code is divided into independent modules to 
facilitate future changes and enhancement. A collaboration with researchers at NCI was 
initiated to extend the model to defined populations, and a paper was submitted for 
publication. 

14. SUBJECT TERMS Mammography, Screening, Modeling, Cost 

Effectiveness, Promotion, Simulation, Humans, Data, Breast 
Cancer 

17.  SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18.  SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

NSN 7540-01-280-5500 

19.  SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

37 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

Unlimited 

Standard Form 298 (Rev. 2-891 



FOREWORD 

Opinions, interpretations, conclusions and recommendations are 
tnose of the author and are not necessarily endorsed by the US 
Army. 

Where copyrighted material is quoted, permission has been 
obtained to use such material- 

Where material Frnm documents designated for limited 
distribution is quoted, permission has been obtained to use the 
material- 

fm-;=i-t"Trm«* of commercial organizations and tadR names in 
+-h-^ report do not constitute an official Department of Army 
endorsement or approval of the products or services of these 
organizations. 

In conducting research using animals, the investigator<s) 
"adhered to the "Guide for the Care and Use of Laboratory 
Animals," prepared by the Committee on Care and use of Laboratory 
^m^ig of the Institute of Laboratory Resources, National 
Research Council (HIH Publication Ha- 86-23, Revised 1985) . 

Par the protection of human subjects, the investigator(s) 
adhered to policies of applicable Federal Law 45 CFR 46. 

In conducting research utilizing recombinant DNA technology, 
the"investigator(s) adhered to current guidelines promulgated by 
the National Tnta-M fn-t-pq of Health. 

In the conduct of research utilizing recombinant DNA, the 
"" investigator(s) adhered to the HIH Guidelines for Research 

Involving Recombinant DNA Molecules. 

In the conduct of research involving hazardous organisms, ^ 
the~investigator{s) adhered to the CDC-HIH Guide for Biosafety in 
Microbiological and Biomedical Laboratories. 

0, uA OxU^. 
PI - Signature     '   Date 



Annual Report for Grant DAMD17-94-J-4237 

August 22, 1995 - August 21, 1996 
Year 02 

Development of a Stochastic Model of the Cost-Effectiveness of 
Promoting Breast Cancer Screening 

Nicole Urban, ScD 
Principal Investigator 

Table of Contents 

Front Cover Page 1 
SF 298 Report Documentation Page Page 2 
Foreward Page 3 
Table of Contents Page 4 
Introduction Page 5 
Body Page 5 
Conclusions Page 7 

Appendix A "Estimating Medical Costs from 
Imcomplete Follow-up Data" Page 8 



Introduction 

The purpose of this four-year project, funded in August 1994, is to identify an efficient strategy 
for reducing breast cancer mortality through breast cancer screening. To identify such a strategy, 
the trade-off between the frequency of screening among participants and the promotion of 
participation among underusers will be investigated. Ways to improve the effectiveness of 
screening in women aged 40-49 will be investigated, using new biomarkers and detection 
modalities, and the relative cost-effectiveness of various interventions to promote the use of 
regular breast cancer screening among women aged 50-80 will be investigated. A 
comprehensive stochastic simulation model of the effectiveness and cost-effectiveness of breast 
cancer screening will be developed, and its key parameters estimated. 

Body 

Year 02 was spent on identifying and answering the specific questions needed to understand how 
breast cancer affects a defined population. A Statistical Research Associate, Matt Gable, was 
hired in January 1996 to analyze the problem and create the specific algorithms and parameter 
sets required by the model. Mr. Gable replaced Chris Colby (50%) and Adelina Tseng (30%) in 
the original proposal. Much effort was given to the review of the clinical aspects of breast 
cancer, including tumor growth, ductal carcinoma in situ (DCIS), staging, and screen test 
characteristics. Many key features of the ovarian cancer model were extracted to be used in the 
breast cancer model, which was substantially reconceptualized. An implementation of the model 
was begun, designed around modules for natural history (including population characteristics 
and disease progression), screening, survival, and costs and benefits . Each module will be 
programmed separately and all will work together to create the complete simulation model. 

Dr. Urban and Mr. Gable participated in the National Cancer Institute's (NCI) meeting with 
investigators from the Netherlands on their colon cancer modeling project, MISCAN, in 
Bethesda, Maryland during the first week of June. Dr. Etzioni was unable to attend due to the 
birth of her first baby in late April. This meeting gave investigators an opportunity to discuss 
stochastic simulation procedures and to exchange ideas and solutions for overcoming 
programming obstacles and other issues. Investigators at NCI invited Fred Hutchinson 
researchers to participate in a recently proposed project entitled POPSIM that is designed to 
incorporate existing cohort-based microsimulation models into a simulation engine capable of 
simulating multi-cohort populations. This work builds on previous activities by NCI 
investigators, including CANTROL and will include our ovarian and breast cancer simulation 
models and the prostate cancer screening model under development by Dr. Etzioni. Researchers 
from Fred Hutchinson, including Matt Gable, the programmer of the breast cancer model, are 
working in collaboration with POPSIM investigators. 

A paper entitled "Estimating medical costs from incomplete follow-up data" has been submitted 
to and accepted by Biometrics (see Appendix). Dr. Etzioni enlisted the assistance of Danyu Lin 
from the Department of Biostatistics at the University of Washington and Eric Feuer of NCI in 
solving methodologic problems associated with estimation of attributable lifetime costs from 
censored cost data such as those in the SEER-Medicare file. This paper describes the methods 
developed by these collaborating statisticians to analyze the SEER-Medicare cost data to 
estimate expected lifetime costs attributable to stage-specific breast cancer. We are in the 
process of obtaining updated SEER-Medicare data from the Health Care Financing 
Administration in response to the request which was submitted in Year 01. 
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Details of each aspect of the work completed in Year 02 are described below. 

Natural History Module 

This module generates characteristics of interest for a cohort of women, including 
presence/absence of breast cancer, age at diagnosis, type of tumor (DCIS, invasive, or 
metastatic), size and growth rate (or doubling time), and ages at metastasis, invasion, and onset. 
Changes in breast density are assigned, as well as age at death from competing mortality in the 

absence of cancer. 

The natural history module is size-driven: most events in disease progression are associated with 
a tumor size, and time of an event is calculated via the tumor doubling time. The module also 
runs backwards: the initial event in the model is clinical detection, and earlier events are 
generated in order backwards to onset. 

Screening Module 

This module produces a screening schedule for each woman using a method adopted from the 
MISCAN model, then determines results. The MISCAN method of scheduling allows for many 
types of schedules, including regular intervals, irregular "naturalistic" participation, and single 
use, and does not require 100% participation. Results are calculated using the sensitivity and 
specificity of screen tests, modified by breast density and size of tumor. 

Survival Module 

Survival after diagnosis of breast cancer is calculated using Kaplan-Meier survival curves, as 
planned by Ruth Etzioni. Age and stage at diagnosis determine the curve to be used, and the 
same set of curves is used for both clinical and screen diagnosis. Survival is added to the 
relevant age at diagnosis to obtain age at death. If desired, survival may be linked to the 
aggressiveness of the tumor; this is accomplished by using the same random number to select 
both tumor doubling time and survival. 

Costs & Benefits Module 

In this module, costs associated with screening and treatment are discounted and summed. Years 
of life saved (YLS) are calculated as the difference in age at death after clinical and screen 
detection. A summary performance measure, cost/YLS, is calculated for the screening program. 

POPSIM 

NCI researchers Eric Feuer and Julie Legier proposed, and we agreed to, a collaboration to use 
our models as the engines in a larger population model. The ovarian and breast cancer models 
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are built to simulate a single cohort of women at a time, but some projects—for example, 
projecting trends in the US population—require simulation of multiple cohorts. The POPSIM 
project will add to the existing models the capability to update parameters automatically from 
cohort to cohort and aggregate the results for a defined population. 

Conclusion 

Summary of Year 02 

During the second year of this project, the design phase of the modeling effort was completed. 
The components of the model of breast cancer screening were outlined, the relationships among 
them were specified, and coding was begun. The literature on the natural history of breast cancer 
was carefully reviewed in collaboration with breast cancer experts and a modeling strategy was 
developed based on the findings. Model code is divided into independent modules to facilitate 
future changes and enhancement. A collaboration with researchers at NCI was initiated to 
extend the model to defined populations, and an on-going communication via e-mail was 
established with investigators in the Netherlands following a meeting about the MISCAN 
modeling work. Model development work has progressed in accordance with the original 
timeline, but analysis of cost data is behind schedule due to delays in receiving data from HCFA. 
Methodologie work on cost data analysis proceeded in the absence of data, resulting in a paper 
which is forthcoming in Biometrics. 

Plans for Year 03 

The next year of the project will see the completion of code for the model, derivation of 
parameter sets, and integration with a graphical Basic User Interface being developed for it and 
the ovarian model. Parameter sets will be derived from 1) NCI's SEER database, for survival 
and stage- and age-specific incidence in absence of screening; 2) Dr. Urban's Mammography 
Quality Improvement Project (MQIP), for the effects of breast density on the risk of an interval 
cancer; 3) Dr. Urban's Community Mammography Trial (CMT) for women's participation in 
screening; and 4) the SEER-Medicare database for treatment costs as a function of stage at 
diagnosis and time since diagnosis. 

Design questions yet to be resolved include the precise definitions of stages for breast cancer, 
inclusion of cancers never diagnosed in the absence of screening, and modeling changes in breast 
density. Model testing and validation will begin subsequent to the resolution of these questions 
and code completion. 

A network of advisors is being formed to provide additional input. This network currently 
includes Mariann Drucker, a radiologist at the University of Washington, and Ben Anderson, a 
surgeon specializing in breast cancer, also at UW. The advisors are consulted on key points in 
the model design and provide critical review of working documents related to the model. 

A full report, containing more details on the workings of the model, is due in May 1997 to the 
DoD and is currently being prepared.   This report describes the assumptions made in 
construction of the model, techniques used, options available to the user, and strengths and 
weaknesses of the model. If available by May 1997, preliminary results may also be described. 
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Estimating Medical Costs from Incomplete Follow-up Data 
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R. Etzioni 
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and   Y. Wax* 

Department of Statistics, Hebrew University, Jerusalem 91905, Israel 

Summary 

Estimation of the average total cost for treating patients with a particular disease is often 

complicated by the fact that the survival times are censored on some study subjects and their 

subsequent costs are unknown. The naive sample average of the observed costs from all study 

subjects or from the uncensored cases only can be severely biased, and the standard survival analysis 

techniques are not applicable. To minimize the bias induced by censoring, we partition the entire 

time period of interest into a number of small intervals, and estimate the average total cost either 

by the sum of the Kaplan-Meier estimator for the probability of dying in each interval multiplied 

by the sample mean of the total costs from the observed deaths in that interval or by the sum of the 

Kaplan-Meier estimator for the survival probability at the start of each interval multiplied by an 

appropriate estimator for the average cost over the interval conditional on surviving to the start of 

the interval. The resultant estimators are consistent if censoring occurs solely at the boundaries of 

the intervals. In addition, the estimators are asymptotically normal with easily estimated variances. 

Extensive numerical studies show that the asymptotic approximations are adequate for practical 

use and the biases of the proposed estimators are small even when censoring may occur in the 

interiors of the intervals. An ovarian cancer study is provided. 

Key words: Censoring; Cost analysis; Economic evaluation; Health services; Medical care; Missing 

data; Resource utilization; Survival analysis; Treatment cost. 

* Y. Wax is deceased. This paper is dedicated to his memory. 



1. Introduction 

Recent years have seen a heightened interest in studying the cost of health care. One important 

component of this effort is the assessment of medical costs for treating a disease. For instance, when 

evaluating the cost-effectiveness of a cancer screening program, the potential savings in treatment 

costs due to earlier diagnosis through screening are of interest. As another example, comparisons 

of the average costs associated with alternative therapies may lead to substantial cost reduction. 

The data for such analysis may be derived from clinical trials, disease registries, health insurance 

records, etc. A common feature with the available data sources is that some patients are not 

followed for the entire durations of interest. (If the T-year cost is under study, then the duration 

of interest is the minimum of r and the patient's survival time.) Thus, the durations of interest on 

these patients are censored and their subsequent costs are unknown. 

Until recently, the average total cost for a group of patients has commonly been estimated by 

the sample mean of the observed costs from all study subjects or from only the uncensored cases. 

The former estimator, to be referred to as the full-sample estimator, is always biased downwards 

since the costs incurred after censoring times are not accounted for. The latter estimator, called 

the uncensored-cases estimator, is also destined to be biased: it is biased towards the costs of the 

patients with shorter survival times because larger survival times are more likely to be censored. The 

difficulties with using such naive sample averages to make inference about the survival distribution 

have long been recognized in the field of survival analysis. 

In an attempt to adjust for the effects of censoring, several researchers (e.g., Quesenberry et al., 

1989; Hiatt et al., 1990; Fenn et al., 1995) have applied the standard survival analysis techniques 

(e.g., Kaplan-Meier estimator and log rank test) to the problem of cost evaluation by treating costs 

as potentially right-censored survival times (i.e., attaching the censoring indicator to the observed 

total cost). This strategy, however, is invalid unless all patients accumulate costs with a common 

(deterministic) rate function over time (yielding a one-to-one correspondence between the survival 

time and total cost). In practice, the cost functions vary among patients. Thus, a patient who 

accrues costs at higher rates tends to generate larger total costs at both the survival time and 

censoring time, which implies that the total cost at the survival time is positively correlated with 

the total cost at the censoring time. This correlation implies that "censored" total costs cannot 

be analyzed by standard survival analysis methods, all of which require independence between the 



variable of interest and its censoring variable. 

In this paper, we show how to properly adjust for censoring in the cost estimation. Specifically, 

we divide the entire time period of interest into several intervals and then estimate the average 

total cost by the sum of the Kaplan-Meier estimator for the probability of dying in each time 

interval multiplied by the sample mean of the total costs from those who are observed to die in 

that interval. The distribution function of the total cost and its quantiles may be estimated in a 

similar fashion. If the costs accrued within the intervals are recorded, then the average total cost 

can also be estimated by the sum of the Kaplan-Meier estimator for the probability of surviving 

to the start of each interval multiplied by an appropriate estimator for the average cost over the 

interval conditional on surviving to the start of the interval. The latter approach makes fuller use of 

the cost information and accommodates left-truncation in addition to right-censorship. Consistent 

estimators can be constructed under either approach if the censoring time distribution is discrete. 

Furthermore, the proposed estimators are asymptotically normal with variances that can be easily 

estimated. Extensive numerical studies show that the new methodology is appropriate for practical 

use. A detailed illustration with an ovarian cancer study is provided. 

2. Methods 

2.1. Preliminaries 

Let the random variable C denote the total medical cost for a patient over the time period 

[0,r). In addition, let T and U be the latent survival and censoring times. We assume that T is 

continuous and U is either continuous or discrete. If T < r, then C becomes the total cost up to 

T. Our main task is to estimate the mean (total) cost E = £(C), where £ denotes expectation. If 

no patient is followed beyond r, then it would not be possible to include the cost incurred after r 

in the definition of the mean total cost without imposing stringent and untestable assumptions. 

We divide the entire time period [0,r) into K intervals [afc,ak+\) (k = 1,...,K), where ai = 0 

and aK+1 = r. Let the random variable Ck be the cost incurred over [ak,ak+i) {k = l,...,iif)- 

Naturally, a patient can accrue costs over [ak,ak+i) if and only if he/she survives to the start of 

the interval ak. 

Write X = min(T, U) and 6 = I(T < U), where /(•) is the indicator function. The data typically 

consist of n independent replicates of (X,5,C), where C is the observed total cost, namely, the 



cost accrued from the start of the follow-up to the last contact date X. When the cost histories 

are recorded, C may be decomposed as (Ci,..., CK) , where Ck is the observed cost over [ak, ak+i). 

The subscript i will be added to the variable names to indicate individual patients. Obviously, 

5i = 1 or Xi = T implies that C, = C, . If X,- < ak, then Cki is either zero or missing dependent on 

whether Si = 1 or 0. Given Xi > ak, Cki = Cki if the tth patient is not censored before ak+i and 

Cki equals the cost accrued over [afc, Ui) otherwise. We allow some of the Cki to be missing before 

Xi, but only in a completely random fashion. 

The validity of the familiar survival analysis techniques, such as the Kaplan-Meier estimator, 

depends critically on the assumption of independent censoring, which requires that, at any follow- 

up time t, patients cannot be censored because they are at unusually high (or low) risk of dying 

(Kalbfleisch and Prentice, 1980, pp. 40-41). In our setting, it is necessary to extend this definition 

to require that, at any follow-up time t, patients are not censored because they will accrue unusually 

high (or low) costs. 

We shall provide two approaches to cost estimation, one requiring only the observed total costs 

at the last contact dates and one making use of the observed costs within the small intervals 

[ak, ak+i) (k = 1,..., K). We begin with the latter approach. 

2.2. Using the Cost Histories 

Recall that C = £fc=i Ck, which implies that E = X)Li £(Cfc). By the conditional expectation 

argument, E = ELI * {£(Ck\T > ak)}, which equals £fcLi Pr(T > ak)S{Ck\T > ak), or 

K 

£ = £SfcEfc, 
fc=i 

where Sk = Pr(T > ak) and Ek = S(Ck\T > ak). The replacements of Sk and Ek {k = 1,..., K) 

by their consistent estimators will yield a consistent estimator for E. As will become clearer later, 

estimation of Ek (k = 1,..., K) is much less challenging than direct estimation of E. 

The survival probabilities Sk (k = 1,..., K) can be consistently estimated by the Kaplan-Meier 

method. Specifically, let h < t2 < ... < tj be the (ordered distinct) observed survival times, and 

let dj be the number of observed deaths at tj and let rij be the number of patients under observation 

at tj (j = 1,..., J). Then the Kaplan-Meier estimator of Sk is 

5fc=    n    n1-dj__ 

3*3 <ak       ^ 



The (extended) assumption of independent censoring mentioned in §2.1 implies that £(Ck\T > 

ak) = £(Ck\X > ak) (k = 1,...,K), which enables us to estimate Ek from the patients who are 

under observation at time ak. Let Yki indicate, by the values 1 vs. 0, whether or not Ck{ is included 

in the estimation of Ek. (Naturally, Yki is 0 if Ck{ is missing). Then Ek are estimated by 

p _ H2?=i YkiCki    , _,        K 

and E is estimated by E = Ysk=i SkEk. 

If we define Yki — I{Xi > ak), then Ek is the sample average of the observed costs over [ak, ak+i) 

among those who are under observation at the start of the interval. Denote the resulting estimator 

of E by EA- This estimator was previously utilized in some applications (Manning et al., 1989; 

Keeler et al., 1989; Hodgson, 1992; Etzioni, Urban and Baker, 1995), but its properties were not 

studied. It is easy to see that Ek is an unbiased estimator of Ek if censoring occurs only at the 

end of the interval, in which case Cjt, = Cki for all non-zero Yjti's. This censoring pattern can 

be constructed if patients enter the study at discrete time points and are withdrawn from the 

study prematurely at limited time points. If censoring occurs before the end of the interval, then 

Ek will underestimate Ek since the costs from the censoring times to the end of the interval are 

not accounted for. Clearly, the bias of EA depends on the amount and timing of censoring and 

diminishes as the intervals shrink. If there is heavy censoring and the cost information is available 

only in broad time intervals, then it may be advisable to prorate the costs of the censored cases. 

It is instructive to compare EA with the naive full-sample estimator mentioned in §1. (The latter 

may be regarded as an extreme special case of the former with K = 1.) For the naive estimator, the 

costs from the censoring times through the terminal time point r are omitted entirely, which will 

result in substantial underestimation of E unless all the censoring times are close to r. Even though 

we use the same kind of sample averages to estimate the individual Eks, the resulting estimator EA 

is always less biased because a censored case poses a difficulty only in the time interval in which the 

censoring occurs and the gap between the censoring time and the end of the corresponding interval 

is generally much smaller than that between the censoring time and the terminal time point r. 

An alternative way of estimating Ek is to exclude those who are censored during [ak,ak+i) 

from the calculation of the sample average Ek. The resulting estimator will be unbiased if all the 

patients who are under observation at time ak have the same probability of being censored during 



[ak,ak+i). This condition, which guarantees that the uncensored Cjt.'s are representative of all the 

Cfc.'s in the Jfcth interval, essentially requires that censoring occurs only at the start of the interval. 

(Larger survival times will have higher probabilities of being censored unless censoring takes place 

before any death.) Because the costs incurred over a small time interval are (stochastically) similar 

between the censored and uncensored cases, the sample average of the costs from the patients who 

are under observation at time ak and who are not censored in [ak,ak+i) provides a reasonable 

estimator of Ek even when censoring may occur in the interior of the interval. The corresponding 

estimator of E, denoted by EB, is always less biased than the naive uncensored-cases estimator 

mentioned in §1, which may be regarded as an extreme special case of EB with K = 1. The bias 

of EB will approach zero as the interval widths decrease.  In general, EB is less biased than EA 

but may also be less efficient. Naturally, both estimators reduce to the usual sample mean in the 

absence of censoring. 

To summarize, EA and EB are consistent for E when censoring occurs only at the ends and 

the beginnings of the intervals, respectively, and both estimators are nearly consistent for small 

time intervals regardless of the censoring pattern. For making formal statistical inference about 

the average cost E, it is imperative to ascertain the distribution of the estimator E (EA or EB)- 

We show in Appendix A that, for large n, the estimator E is approximately normal with mean 

E* = EfcLi SkE*k and with variance V = £?=i EfcLi ££i WkiWH, where E*k = €(Ckl\Ykl = 1), 

and ~ 
w        SkYki(Cki-Ek)      .   -    \I{Xi<ak)Si ^ 6j 1 

^i=^Yk3 { "« j:Xj<mln(ak,Xi) a3 ) 

and R{ — YA=\ I(Xl > -^«')- (As mentioned above, the use of EA and EB entails that E* = E if 

censoring occurs only at the ends and the beginnings of the intervals, respectively.) These results 

enable one to make formal inference about the average total cost for a group of patients or the 

difference between two independent groups. 

2.3. Not Using the Cost Histories 

By the law of conditional expectation, E - Y%=\ £(c\ak <T< ajt+i)Pr(afc < T < ak+l) + 

E(C\T > r)Pr(r > r), or£ = 12k=i £{C\ak < T < ak+1)Pv{ak < T < 0jt+1) with aK+2 = oo. 



Thus, 
K+i 

E=J2MSk-Sk+1), (2.1) 
fc=i 

where Ak = £{C\ak < T < ak+i). 

Under the (extended) independent censoring condition given in §2.1, 

Ak = £{C\ak <T< ak+1,U> ak) = £{C\X > ak,T < ak+l), (2.2) 

showing that it is possible to estimate Ak from the patients who are under observation at time 

ak. If censoring occurs only at the end of the interval (i.e., ak+i-), then I(X > ak,T < ak+i) = 

I(ak < X < ak+i,S = 1), in which case Ak can be consistently estimated by the sample mean of 

the total costs from those who are observed to die in [ak, ak+i), namely, 

k~   U=iYki ' 

where Yki = I(ak < Xi < ak+i,Si = 1). This estimator may also be expressed as 

k~ nur« 
since Yki = 1 implies that C; = C,\ If censoring takes place at the start of the interval (i.e., ak), 

then, given {X,- > ak}, the T.'s have the same probability of being censored in the interval. Under 

this scenario, the patients who are observed to die in [ak, ak+i) are a random subset of all the 

deaths in [0^,0^+1), which entails that Äk is still consistent for Ak. If censoring occurs in the 

interior of the interval, then Äk tends to be driven by the costs of the patients who die early on in 

the interval because, given the same censoring distribution, larger survival times are more likely to 

be censored. However, if the interval is narrow, the costs associated with the early deaths of the 

interval are (stochastically) similar to those of the late deaths so that the bias of Ak will be small. 

Most of the discussion in the preceding paragraph pertains to Ak (k = 1,...,K) only. By 

definition, A^+i = £(C\T > r), which equals £(C\X > r) according to (2.2). Thus, we estimate 

AK+I by 
: E?=i YK+IJCJ 

AK+I -   ™    v 1 
Li=i YK+l,i 

where YK+IJ = I{Xi > r).   Note that ÄK+I is always consistent for AK+I (regardless of the 

censoring pattern) provided that the independent censoring assumption holds. 



It is clear from the expressions for Ak (k = 1,..., K +1) that the observed costs of the patients 

who are censored before r are not involved in any calculations and therefore need not be recorded. 

The costs of the other patients (i.e., those who are observed to die or whose censoring times equal 

r) are allowed to be missing, but only in a completely random fashion. Naturally, Yk{ = 0 if C, is 

missing. 

Given the St's and Ak's, we estimate E by 

K+1 . 
ET = 53 Äk{Sk - 5jk+i). 

fc=i 

Because the Kaplan-Meier estimators and AK+I are consistent regardless of the censoring pattern, 

the estimator ET will be consistent as long as Äk (k = 1,..., K) are consistent. The consistency of 

the Afc's can be achieved if the censoring time distribution is discrete, in which case the cut-points 

ak may be chosen to coincide with the possible censoring times.   If the censoring distribution is 

continuous, then it is desirable to choose a fine partition of the time period so that the bias can be 

minimized. However, this is subject to the constraint that reliable estimation of Ak (k = 1,..., K) 

requires a reasonable number of observed deaths in each interval. 

In order to study the large-sample properties of ET under arbitrary censoring distributions, we 

define A*k = £{C\ak <X< ak+uS= 1) (* = 1,. ..,#)» A*K+l = AK+1 and E* = ££+* A*kiSk ~ 

Sk+i). Of course, if censoring takes place only at the boundaries of the intervals, then A*k = Ak 

(k — 1,. • •, K) and E* = E.   We show in Appendix B that, for large n, the estimator ET is 

approximately normal with mean E* and with variance VT = £"=i Efc^1 E/H1 WjyWii, where 

Wki = & - *w)r«(C.- - ^) + Ek(Sk+iDk+u - SkDki), (2.3) 
l->j-l *kj 

Du=Wl*>)Si__      E & (2.4) 
' j:Xj<min(a^,Xi)      3 

andi2, = E"=i^(^>^.)- 

In the special case where patients are enrolled simultaneously and study termination is the only 

source of censoring, the proposed estimator ET reduces to the naive sample mean. As discussed 

in §1, when there are staggered patient entries and/or early withdrawals, the naive sample mean 

will be biased downwards if the observed total costs of all patients are included in the calculation 

and will be biased towards the costs associated with shorter survival times if the cases censored 

before r are excluded. Although we use the sample means of the costs from the observed deaths 



to estimate the individual Ak% the biases of the Afc's are minimal even if censoring may occur in 

the interiors of the intervals because the total costs of the patients who die in a small time interval 

are much more homogeneous than the total costs of all patients. Therefore, the bias of ET is much 

smaller than the naive sample mean of the costs from all the observed deaths. 

The idea of dividing the entire time period of interest into a number of small intervals and then 

combining the Kaplan-Meier estimators with the sample means is essential to the developments in 

both §2.2 and this subsection. The key difference lies in the decomposition of the costs. In §2.2, 

the mean total cost is decomposed as the sum of the probability of being alive at the start of each 

interval multiplied by the average cost incurred over the interval conditional on being alive at the 

start of the interval. Here, the same parameter is represented by the sum of the probability of 

dying in each interval multiplied by the average total cost of those who die in the interval. In the 

former case, the cost information on a patient contributes to the estimation of the Ek's for each 

time interval in which he/she is under observation, whereas in the latter case only the costs of the 

observed deaths are utilized. Some loss of efficiency may result from disregarding the costs of the 

censored cases. Additional difficulties may arise if the survival time is also subject to left-truncation 

(i.e., some patients have already accrued costs for some time before the follow-up begins). In that 

situation, the truncated cases have to be excluded from the calculation of the Ajt's because the 

costs incurred before the truncation times are unknown. This may not only reduce the efficiency, 

but may also shorten the time period over which the average total cost can be estimated, as will 

be elaborated in §4. Of course, the main advantage of using ET is that it does not require the 

breakdown of the medical costs in small time intervals, which is infeasible in some applications. 

Another advantage of the approach taken in this subsection is that it can also be used to estimate 

the distribution function of C.  Let F{c) = Pr(C < c) and Fk(c) = Pr(C < c\ak < T < ak+i). 

Then, analogous to (2.1), 
K+i 

F(c)=Y,Fk(c)(Sk-Sk+i), 
k=i 

which can be (consistently) estimated by 

K+l 
Hc)=Y,K(c)&-Sk+1), 

k=i 

where 



By the arguments given in Appendix B, for large n, the estimator F(c) is approximately normal 

with mean F(c) (or a limit analogous to E* if censoring may occur in the interior of an interval) 

and with variance V(c) = J2?=i EjLV Ei**1 Wki(c)Wii{c), where Wki(c) is the same as Wki except 

that Ci and Äk on the right side of (2.3) are now replaced by I(Ci < c) and Fk(c). 

The quantiles (such as median) of the distribution can be estimated from the above empirical 

distribution function F along the lines of Brookmeyer and Crowley (1982). Let 0 < p < 1, and 

define ^p = F'1 (p) = inf {c : F(c) > p} as the pth quantile of F. Then ipp is estimated (consistently) 

by 

j>p = inf{c : F(c) > p). 

An approximate 95% confidence interval for rpp is the collection of all values of ipp which satisfy 

!%£)-?! < 1.96, 
^1/2(^,0) 

i.e., all hypothesized values tpp of ipp which are not rejected when the null hypothesis ipp — tpp 

is tested against the alternative hypothesis ij)p ^ ij)p at the 5% level based on the large-sample 

normality of F(c). This interval can be read directly from the upper and lower pointwise 95% 

confidence limits for F(c) in the same manner as ^>p can be read from the empirical distribution 

function F(c) itself, as will be demonstrated in §4. 

3. Numerical Studies 

Extensive Monte Carlo simulations were conducted to assess the performance of the proposed 

estimators EA, EB and ET in terms of bias, variance estimation and normal approximation. For 

comparison, we also evaluated the three naive estimators discussed in the previous sections. Let EF 

and Eu denote, respectively, the naive full-sample and uncensored-cases estimators, and let EKM 

denote the empirical mean of the Kaplan-Meier distribution treating total costs as right-censored 

survival times. 

The survival times were generated from two distributions, uniform on [0,10) years and expo- 

nential with a mean of six years. We assumed that the study only lasts ten years so that the 

terminal time point r equals 10. Thus, the average 10-year cost is the parameter of interest under 

both distributions. 
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We postulated U-shaped sample paths for the costs, i.e., there is a high cost associated with 

diagnostic tests around the time of diagnosis and then there is a sharp rise of costs prior to death. 

To be specific, we divided the entire time period into ten one-year intervals. Within each interval, 

there is a baseline cost which has a uniform distribution on [1000,3000] dollars annually; the total 

diagnostic cost is uniform on [5000,15000] dollars at the time of diagnosis; the cost in the final 

year of life is uniform on [10000,30000] dollars. (The diagnostic and death costs are added to the 

baseline costs.) We assumed that the annual baseline cost is evenly distributed over the one-year 

period and that the terminal-phase cost is evenly distributed in the final year of life (which may 

overlap two intervals). Given the above cost specifications, the mean costs over the ten-year period 

are about $39000 and $34680 under the uniform and exponential survival distributions, respectively. 

The results reported here pertain to the moderate sample size of 100 patients. Due to the 

potential difficulty of no patients under observation for year 10, we collapsed the last two time 

intervals, and used nine instead often time intervals in the analysis, i.e., (ai,a2, ...,a/c, GA'+I) = 

(0,1,2,3,4,5,6,7,8,10) and K = 9. 

We considered three censoring patterns: censoring at the ends of the intervals only, at the 

starts of the intervals only, and in the interiors of the intervals, which will be referred to as Cases 

I, II and III, respectively. The portions of the costs incurred after censoring times are, of course, 

unobservable. Recall that EA and EB are consistent in Cases I and II, respectively. Case II is 

the worst scenario for EA since a censored patient then has observed cost of zero in the censoring 

interval. In real applications, one would move the ajfc's slightly to the right so that EA would be 

consistent. Similarly, one would not apply EB literally to Case I. We included EA in Case II and 

EB in Case I (without any modifications) in order to assess the upper bounds of the biases for 

these two estimators. 

We carried out two sets of simulation studies with different levels of censorship. In the first set, 

the censoring times have the following distributions: Case I: Pi(U = ak-) = 0.05 (k = 2,..., 10) 

and Pi{U = a10) = 0.55; Case II: Pr(*7 = ak) = 0.05 (fc = 1.....9) and Pr(C/ = aw) = 0.55; 

Case III: Pr(C/ < t) = i/20 (t < a10) and Pr(J7 = a10) = 0.50. For the second set, we increased 

the amount of censoring as follows: Case I: Pr(0" = ak-) = 0.08 (k = 2,..., 10) and Pr(l7 = 

a10) = 0.28; Case II: Pr(J7 = ak) = 0.08 (fc = 1,...,9) and Pr(U = al0) = 0.28; Case III: 

Pr(C < t) = i/12.5 (t < aw) and Pi(U = a10) = 0.20. The overall censoring probabilities for the 
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two sets are approximately 25% and 40% under the uniform survival time distribution and about 

30% and 45% under the exponential distribution. We shall refer to the first set as light censoring 

and to the second set as moderate censoring. 

The main results of the simulation studies are summarized in Tables 1 and 2. We first comment 

on the performance of the methods developed in §2.2. The estimators EA and EB appear to be 

unbiased in Cases I and II, respectively. The variance (or standard error) estimators for EA and 

EB provide fairly accurate estimation of the true variation, and the confidence interval based on 

the normal approximation has adequate coverage probability when the bias of the estimator (EA 

or EB) itself is small. There are considerable biases for EA in Cases II and III especially with 

moderate censoring, which implies that narrower time intervals, quarterly or monthly, should be 

used for this estimator when censoring does not occur exclusively at the ends of the intervals. The 

estimator EB performs well in all three cases. We recommend that EA be used when censoring is 

concentrated at the ends of the intervals and EB be used in all other situations. 

The estimator Ej is virtually unbiased in Cases I and II, but has some bias in Case III especially 

under moderate censoring. The variance (or standard error) estimator is fairly reliable under light 

censoring, but underestimates the true variation under moderate censoring. The corresponding 

confidence interval has reasonable coverage probability except in Case III with moderate censoring. 

We conclude that the methodology of §2.3 works well when censoring occurs solely at the boundaries 

of the intervals provided that there are a few (say, 5 or more) observed deaths in each interval, but 

the results need be interpreted with caution when there is substantial censoring in the interior of 

an interval. 

It is interesting to compare ET versus EA and EB. For light censoring, the performance of 

ET is comparable to, in fact appears to be slightly better than, that of EA and EB. Under the 

exponential survival distribution with moderate censoring, however, Er is noticeably worse than 

EA in Case I and worse than EB in Cases II and III. 

As expected, the naive estimators Ep and Eu are much worse than EA and EB, respectively, 

in all cases. The negative bias of EF is very alarming, especially under moderate censoring. Due to 

the positive correlation between the survival time and the total cost, Eu is also biased downwards. 

(Obviously, Eu will be biased upwards if the patients who die early tend to accrue higher costs 

than those who live longer.) The bias of EKM can be substantial and of either direction. 
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4. A Real Example 

We now use the proposed methodology to study the medical costs attributable to epithelial 

ovarian cancer among Medicare enrollees in the United States. The data base (Potosky et al., 

1993) consists of 4798 Medicare beneficiaries over the age of 65 who were diagnosed with local, 

regional or distant stage ovarian cancer from 1973 through 1989. The data collection was initiated 

at the beginning of 1984 and terminated at the end of 1990. As a result, the patients who died before 

1984 were excluded and those still alive at the end of 1990 were censored. The cost information 

covers the years 1984 through 1990 and contains the monthly costs on those who were alive at some 

point during this period. Even though no individual patients were followed for more than seven 

years, the post-diagnosis information on survival and cost extended over a period of seventeen years 

(after diagnosis) due to staggered times of diagnosis. 

In this study, the assumption of independent censoring is satisfied because study termination 

was the only source of censoring. Due to the lack of information on the exact date of diagnosis, we 

assume that the diagnosis took place at the start of the calendar month. This assumption, together 

with the use of December 31, 1990 as the censoring date, creates a situation where censoring 

occurred only at the end of each month. Thus, the estimators EA and E? with monthly intervals 

will be consistent: 

The survival times were also subject to left-truncation in that the patients who were diagnosed 

before 1984 were not followed from their times of diagnosis. Because the truncation date is in- 

dependent of the survival time and costs in this case, the methodology presented in §2.2 can be 

applied with some minor modifications, as explained at the end of Appendix A. The left-truncation 

and right-censorship generally do not affect the time period over which the average total cost may 

be estimated by this approach because it requires some cost data in each time interval, say each 

month, but not the total cost over the entire time period of interest on any particular patient. The 

Kaplan-Meier estimators involved in the construction of ET may also be modified to accommodate 

left-truncation; see the end of Appendix B. However, only the patients whose total costs were fully 

observed may be used in the estimation of the A^'s. As a result, the methodology of §2.3 cannot 

be used to estimate the total cost over a time period longer than the maximal length of follow-up 

on a patient, which is seven years in this case. 

Out of the 4789 patients, 1080, 1020 and 2698 were diagnosed as local, regional and distant 
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stages, respectively. We first use the methodology of §2.2 to estimate the average 15-year post- 

diagnosis costs for the three clinical stages. The starting time for our analysis is taken to be 

one month prior to diagnosis so as to incorporate the costs associated with making the definite 

diagnosis. 

The Kaplan-Meier estimates of the survival probabilities are displayed in Figure 1, and the 

cost estimates based on three methods are summarized in Table 3. As discussed earlier, EA is 

consistent in this case. Due to heavy left-truncation and right-censorship, the naive full-sample 

estimate Ep substantially underestimates the true cost, especially for local and regional stages. 

The naive complete-cases estimator Eu, which excludes the truncated and censored cases, is also 

severely biased downwards as none of the complete cases were followed for more than seven years. 

The naive Kaplan-Meier estimator EKM cannot even be calculated in this case because the costs 

accrued prior to the truncation times are unknown. 

The 95% confidence intervals based on EA are (3273,10636) and (1287,6843) for comparing 

local vs. regional and regional vs. distant stages, respectively, indicating that the long-term costs 

are the highest for those diagnosed with local stage, and the lowest for the distant stage. The cost 

histories are displayed in Figure 2. This figure, combined with Figure 1, shows that, although it 

is highly expensive to treat late stage ovarian cancer, the lifetime costs are higher among patients 

diagnosed at a less advanced stage because those patients have longer post-diagnosis survival times. 

For further illustration, we use the methodology of §2.3 to analyze the seven-year cost. Because 

most of the patients diagnosed with distant-stage ovarian cancer died within seven years after diag- 

nosis whereas the regional-stage and especially the local-stage patients lived considerably longer, it 

is more interesting to apply the methodology to the former patients than to the latter patients. We 

henceforth concentrate on estimating the average cost during the first seven years for the patients 

diagnosed with distant-stage ovarian cancer. 

Approximately 71.2% of the 2698 patients diagnosed with distant-stage ovarian cancer were 

followed from diagnosis to death. As shown in Table 4, ET produces a slightly lower estimate of 

the 7-year average cost than EA- Neither estimate is far away from the 15-year estimate of EA given 

in Table 3 because the distant-stage patients rarely lived past the seven-year mark. The standard 

error estimate for ET is about 13% higher than that of EA, which entails that the confidence interval 

based on ET is a bit wider than that of EA- As expected, EF and Eu give smaller estimates of the 
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average 7-year cost. 

Figure 3 displays the estimated distribution function for the 7-year cost along with the pointwise 

95% confidence intervals. The distribution is highly skewed in that most (about 73%) of the seven- 

year costs are less than $50000 whereas some patients accrue costs of more than $200000. The 

estimation of the median cost is also illustrated in the figure. The point estimate is $29935, which 

is about $8000 less than the mean estimate shown in Table 4. The approximate 95% confidence 

interval for the median cost is ($28375, $31379). 

5. Discussions 

This paper provides a rigorous treatment of the important problem of cost estimation in medical 

studies. The proposed estimators are consistent under appropriate censoring conditions and are 

asymptotically normal with easily estimated variances. The numerical results in the previous two 

sections demonstrated that these estimators perform well in practical settings. By contrast, the 

commonly used naive sample averages can be very misleading. 

The methodology described in §2.2 requires that the cost histories be recorded on some patients 

whereas that of §2.3 requires only the total costs at the last contact dates (among those who are 

observed to die before r or still alive at T). If the cost histories are available, then the former 

approach is usually preferable, especially when there is substantial censoring and/or truncation, as 

it makes fuller use of the cost information and requires smaller sample sizes. However, only the 

latter approach can be used to estimate the distribution function and quantiles. 

The cost information and survival information need not come from the same set of patients or 

the same source of data. We may accommodate such situations by making some minor changes 

in our notation. Suppose that there is a total of n patients, some of whom are used to estimate 

the üJfc's (or the -Ajt's) and some of whom are used to estimate the 5fc's. If the ith patient is not 

involved in estimating Ek (or Ak), then we set Yfc« = 0. Similarly, if the jth patient is not involved 

in estimating Sk (k = l,...,K), then we set Xj = Sj = 0. With these modifications, all the results 

given in §2 and the Appendices, including the variance formulas, will hold. 

The EA estimates of the average costs shown in Table 3 differ slightly from those of Etzioni et 

al. (1995), who used a different database for the survival estimation in order to bypass the problem 

of left-truncation.  It would not be possible to estimate the variances for their estimates because 
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some patients belong to both data sources but we do not have the information to match those 

patients. 

Our definition of the average cost E includes both the patients who die before r and those who 

are still alive at r. Thus, ET requires the observed costs over [0,r) on those still alive at r. An 

alternative definition is to exclude the latter patients. Then E would be interpreted as the average 

total cost among those who die in [0, r) rather than the average total cost over [0, r) among all 

patients. Under the alternative definition, it would be possible to estimate the average cost over 

some sub-interval of [0, r) in the absence of the cost history data. 

The assumption of independent censoring requires some care. This assumption is clearly not 

satisfied if patients are withdrawn from the study for health- or cost-related reasons. It is very 

difficult, if not impossible, to deal with such dependent censoring even for the survival time distri- 

bution itself. One must carefully examine the independent censoring assumption before applying 

the proposed methodology. 
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APPENDIX A 
Large-Sample Properties of EA and EB 

By the law of large numbers, the estimators Ek (k = 1,...,K) converge in probability to E£. 

It then follows from Slutsky's theorem and the consistency of the Kaplan-Meier estimator that E 

{EA or EB) converges in probability to E*. 

Let Z = nll2(E-E*). Then 

Z   =   n^ij^SkEk-YsSkEt) 
\fc=i fc=i / 
K K 

=   nlI^Sk{Ek-Ei) + nll2Y.Et{Sk-Sk) 
k=\ k-=\ 

=   Zi+Z2,    say. 

Due to the consistency of the S/t's, 

Zi = n^ £ Sk(Ek - Et) + op(l) = £ Sk
n~l/2^£(C«-E*k) + ^ 
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where op(l) denotes an asymptotically negligible term, which converges in probability to 0. By the 

central limit theorem and the law of large numbers, the random variable n-1/2 J2?=i Yki(Ck{ - El) 

is asymptotically zero-mean normal and the random variable n-1 YA=\ Yki converges in probability 

to the constant £(Yfci). It then follows from Slutsky's theorem that 

which is essentially a sum of n i.i.d. (independent and identically distributed) zero-mean random 

variables. 

We shall also derive an i.i.d. representation for Z-i- It is convenient to introduce the counting 

processes JV,(t) = SJ(Xi < t) and the associated martingales M,(£) = JV,-(i) - /o-TpG > t)dA(t) 

(i = l,...,n), where A(-) is the cumulative hazard function of the survival time T. It is well- 

known that the Kaplan-Meier estimator Sk is asymptotically equivalent to e~Afc, where Afc is the 

Nelson-Aalen estimator for Afc = A(afc), i.e., 

Furthermore, 

■v'(A.-A>) = .-^tjf.-,IifJ<gfiSt)+Mi) <*»> 
(Fleming and Harrington, 1991, pp. 5-6). Then the martingale central limit theorem (Fleming and 

Harrington, 1991, Theorem 5.3.5) enables us to replace the denominator on the right side of (A.2) 

by its expectation, yielding 

^-Afc)=„-./2t/;_f^|L+M1), 

which is essentially a sum of n i.i.d. zero-mean random variables. By the Taylor series expansion, 

nll\Sk - Sk) = -Skn^ih - Afc) + op(l). Thus, 

Combination of equations (A.l) and (A.3) yields Z = n-1/2 £"=1 Efc=i &•' + op(l), where 

,        SkYki(Cki-Ej) y»    dMjjt) .      . 
iki = —md—kkJ0 pr(jr>o' l  ' 
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Note that, for every i, the random elements involved in £*,- (k = 1,...,K) pertain to the tth 

patient only, which indicates that the random variable Z is essentially a sum of n i.i.d. zero- 

mean random variables. Therefore, a straightforward application of the central limit theorem 

shows that Z converges in distribution to a zero-mean normal random variable with variance 

*
2
 = £(E£LI££I6I£/I). 

It is natural to estimate a1 by a2 = n~l E"=i YJk=i T,iLiiki£u, where the 4,'s are obtained 

from the f jti's by replacing the unknown quantities on the right side of (A.4) with their respective 

sample estimators, i.e., 

t   _ SkYki(Cki-Ek)      .   -    /"»* dNi(t)-I(Xi>t)dk(t) 
^~    n-^UYkj " "Jo        n-^UI{Xl>t)     ■ 

The integral on the right side of the above equation equals 

I(Xi<ak)Si "   I(Xj > Xj)I{Xj < ak)Sj ,      . 
'.\      2s n-l/r" . T(Y,-> YAW ' K    '  } 

n~l EF=i i(Xi > Xi)   fr[ n-HE"=i HX > x,)}2 

Note that the variance expression V for E given in §2.2 is simply a1 In. The consistency of <r2 

follows from the consistency of Ä(-), Ek and Sk (k -1,...,K) along with Slutsky's theorem and 

the law of large numbers. 

To provide some insights into the limiting variance expression, let ££,•' and £^f- denote the two 

terms on the right side of (A.4), i.e., &,- = £*,•+£*,•• Then 

-2=* (E htttf)+e (££$$)+v (££$$) -     (*-6) 
which is just a representation for Var(Z) = Var(Zi) +Var(Z2) + 2Cov(Z1( Z2). The first two terms 

on the right side of (A.6) are the variances attributable to the variations of the J&jt's and the 5/t's, 

respectively, and the third term is the covariance. Each of the three terms account for the variations 

within the intervals as well as the covariances among the intervals. 

Finally, we show how to incorporate left-truncation into our estimation procedures. Let B{ 

(i = 1,..., n) be the truncation times, which are assumed to be independent of the survival times 

and costs. Since the costs incurred before the truncation times are not recorded, we set Yki to be 0 

if Bi > ak, or include the indicator I(B{ < ak) in the definition of Yk{. The risk sets for the survival 

estimation are modified in a similar fashion. Specifically, expression (A.5) becomes 

I(Xi < ak)5i      A I{Bj < Xj < Xj)I{Xj < a^Sj 
2-y „-U n -1 EF=i I(Bi < Xi < Xt)    fr[ n-HE?=i I(Bi < Xj < x,)p 
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APPENDIX B 
Large-Sample Properties of ET 

By the law of large numbers, the estimators Äk {k = 1,..., K + 1) converge in probability to 

A*k. It then follows from Slutsky's theorem and the consistency of the Kaplan-Meier estimator that 

ET converges in probability to E*, which reduces to E if censoring occurs only at the boundaries 

of the intervals. 

Write Z = nll2(E - E*). We decompose Z as Z = Zx + Z2 - Z3, where 

K+l 
Z^nW'EiSk-Sk+MÄk-At), 

Z2^nl'2YjAl{Sk-Sk), 
k=i 

K+l 
Z3 = n1'2'£iAUSk+i-Sk+i). 

k=i 

Because of the consistency of the Sfc's, 

K+l K+l -1/2 v^n    Yu(C -AD 
zx=n1/2 x: (sk - sk+1)(Äk - AD+0,(1) = E (sk - sk+1)—„-r^^vl-    + °p(1)- 

By the arguments given in Appendix A, one may replace n-1 £"=1 Yk{ in the above equation by 

its limit 5(lfci) without altering the asymptotic distribution of Zy. This replacement yields the 

following i.i.d. representation 

ZX = n-'/2ff (5fc " Sk+lZki(;Ci " Al) + oP(l). (B.l) 

It also follows from the arguments of Appendix A that 

t=l   fc=:l v —     ' 

n   K+l 
Zo = -n-] "" 

and 

Z3 = -n"1/2 

where M,(i) (i = 1,..., n) are the martingales introduced in Appendix A. 

By combining equations (B.1)-(B.3), we obtain Z = n"1/2 J%=1 Ef=Y &i + Opt1). where 

fe = WÖ + Ak\Sk+1Jo       Pr(X>t)     5fc7o    Pr(JC>t)r       ^   j 
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Because Z is essentially a sum of n i.i.d. zero-mean random variables, it follows from the central 

limit theorem that Z converges in distribution to a zero-mean normal random variable with variance 

a1 = £ fefcä1 Yd=X1 &1&1) • As argued in Appendix A, the limiting variance a1 can be consistently 

estimated by a2 - n'1 £"=1 J2k=i T.iLt1 €kdu, where the &«"'s are obtained from the &i's by 

replacing the unknown quantities on the right side of (B.4) with their respective sample estimators, 

i.e., 

iki = «(lt-V,)y-^ + nMsk+lDk+u _ skDki), 

where Dki is defined by (2.4). (Note that Wki = iki/n.) 

If there is left-truncation, then the risk sets involved in the Kaplan-Meier estimation will be 

adjusted accordingly, the truncated cases will be excluded from the calculation of the Afc's, and 

Dki will be changed to 

n J(Xt- < ak)Sj ^ I(Bj < Xj < Xj)I(Xj < ak)Sj 
fa'~EP=iW <*.-<*i)   h   {U=xHBi<xj<xl)r   ' 

where £,■ (i = l,...,n) are the truncation times, which are assumed to be independent of the 

survival times and costs. 
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Table 1. 

Summary statistics for the simulation studies: light censoring 

Uniform survival times Exponential survh 
Case I    Case II 

ral times 

Estimator Case I Case II Case III Case III 

EA 
Bias -4 -1837 -986 -2 -1503 -819 

SSE 1148 1179 1152 1139 1139 1129 

SEE 1116 1147 1119 1115 1120 1109 

CP 94.1% 64.0% 84.7% 94.3% 72.1% 87.2% 

EB 
Bias 279 -4 -29 324 -1 86 

SSE 1112 1190 1133 1149 1177 1161 

SEE 1080 1152 1097 1127 1152 1136 

CP 93.2% 94.0% 94.0% 93.6% 94.2% 94.2% 

ET 
Bias -3 -4 -48 -1 -1 -24 

SSE 1112 1149 1144 1141 1175 1170 

SEE 1093 1127 1113 1096 1126 1119 

CP 94.3% 94.2% 94.0% 93.7% 93.7% 93.6% 

EF Bias -5418 -6865 -6180 -3877 -5109 -4528 

SSE 1259 1333 1292 1149 1208 1174 

SEE 1252 1326 1284 1134 1196 1161 

CP 0.8% 0.0% 0.2% 7.4% 1.2% 2.8% 

Eu Bias -1283 -1373 -1423 -468 -544 -572 

SSE 1187 1228 1211 1318 1357 1338 

SEE 1176 1216 1199 1295 1335 1316 

CP 81.1% 80.2% 78.5% 93.0% 92.7% 92.4% 

EKM Bias -832 -877 -880 1135 1096 1062 

SSE .   1124 1158 1142 1181 1211 1195 

SEE 1103 1134 1119 1147 1175 1160 

CP 88.0% 87.5% 87.2% 82.0% 83.5% 83.9% 

Note: The true mean costs are 39000 and 34680 dollars under the uniform and exponential dis- 

tributions, respectively. Bias and SSE are, respectively, the sampling bias and sampling standard 

error for the estimator. SEE is the sampling average of the standard error estimator, and CP is 

the sampling coverage probability of the 95% confidence interval. Cases I, II and III correspond to 

censoring at the ends, at the starts and in the interiors of the intervals, respectively. Each entry is 

based on 50000 simulation samples. 
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Table 2. 

Summary statistics for the simulation studies: moderate censoring 

Uniform survival times Exponential survi 
Case I    Case II 

val times 
Estimator Case I Case II Case III Case III 

EA Bias -1 -3692 -2032 -1 -2920 -1652 
SSE 1304 1364 1303 1287 1276 1258 
SEE 1248 1317 1253 1247 1243 1225 
CP 93.7% 21.5% 62.3% 93.7% 36.5% 70.4% 

EB Bias 546 -9 -156 679 -4 214 
SSE 1225 1423 1290 1358 1408 1433 
SEE 1178 1344 1221 1304 1345 1337 
CP 91.5% 93.3% 92.8% 91.4% 93.1% 92.4% 

ET Bias -7 -17 -317 -11 -3 -93 
SSE 1221 1339 1537 1326 1431 1530 
SEE 1183 1262 1263 1218 1281 1283 
CP 94.0% 93.5% 90.5% 92.3% 91.4% 90.2% 

EF Bias -8663 -10983 -9885 -6201 -8174 -7244 
SSE 1277 1331 1296 1159 1213 1178 
SEE 1267 1320 1286 1144 1198 1163 
CP 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 

Eu Bias -2470 -2819 -2845 -1422 -1677 -1670 
SSE 1311 1400 1358 1389 1463 1424 
SEE 1295 1381 1340 1363 1437 1400 
CP 52.5% 47.1% 43.8% 81.9% 78.6% 77.9% 

EKM Bias -1572 -1769 -1722 404 234 222 
SSE 1195 1257 1224 1220 1276 1242 
SEE 1165 1224 1193 1180 1230 1200 
CP 72.4% 69.1% 69.2% 92.7% 93.4% 93.5% 

Note: See the Note to Table 1. 
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Table 3. 

Estimates and 95% confidence intervals for the average 15-year costs attributable to 

ovarian cancer separated by clinical stages at diagnosis 

Method Local stage Regional stage Distant stage 

EA 50620 43666 39601 

(47891, 53349) (41195, 46137) (38331,40870) 

EF 26390 34706 33746 
(24884, 27895) (32915, 36497) (32698,34793) 

Eu 44350 38092 35221 

(39402, 49297) (35675, 40508) (33965,36478) 
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Table 4. 

Estimation of the 7-year average cost for distant-stage ovarian cancer patients 

Method        Estimate        Stand. Error        95% Confidence Interval 

Ex 37544 702 (36168, 38920) 

EA 38452 621 (37236, 39668) 
Ep 33775 534 (32728, 34822) 
Eu 35452 638 (34202, 36702) 
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Figure Legends 

Figure 1. Kaplan-Meier estimates of the survival probabilities for epithelial ovarian cancer patients: 

local stage, shown by solid curve; regional stage, shown by dotted curve; distant stage, shown by 

dashed curve. 

Figure 2. Estimates of the average cumulative costs for epithelial ovarian cancer patients: local 

stage, shown by solid curve; regional stage, shown by dotted curve; distant stage, shown by dashed 

curve. 

Figure 3. Estimation of the distribution function of the 7-year cost for distant-stage ovarian cancer 

patients: point estimate, shown by the middle solid curve; pointwise 95% confidence intervals, the 

dashed curves. The point estimate and the 95% confidence interval for the median cost are the 

intercepts of the vertical lines with the horizontal axis. 
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